Abstract
This paper shows that there are symplectic four-manifolds M with the following property: a single isotopy class of smooth embedded two-spheres in M contains infinitely many Lagrangian submanifolds, no two of which are isotopic as Lagrangian submanifolds. The examples are constructed using a special class of symplectic automorphisms (generalized Dehn twists). The proof uses Floer homology. Revised version: one footnote removed, one reference added
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.