Abstract

In this paper we consider the general setting for constructing Action Principles for three-dimensional first order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and we show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behavior or homoclinic orbits have not been verified up to now. The Euler-Lagrange equations we get for these systems usually present time reparameterization symmetry, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion. Pacs numbers: 45.20.Jj, 02.30.Ik, 05.45.Ac Keywords: Lagrangian, integrable system, chaos, Lotka Volterra

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.