Abstract

Lagrangian multiforms provide a variational framework to describe integrable hierarchies. The case of Lagrangian 1-forms covers finite-dimensional integrable systems. We use the theory of Lie dialgebras introduced by Semenov-Tian-Shansky to construct a Lagrangian 1-form. Given a Lie dialgebra associated with a Lie algebra g\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {g}$$\\end{document} and a collection Hk\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_k$$\\end{document}, k=1,⋯,N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$k=1,\\dots ,N$$\\end{document}, of invariant functions on g∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {g}^*$$\\end{document}, we give a formula for a Lagrangian multiform describing the commuting flows for Hk\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_k$$\\end{document} on a coadjoint orbit in g∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {g}^*$$\\end{document}. We show that the Euler–Lagrange equations for our multiform produce the set of compatible equations in Lax form associated with the underlying r-matrix of the Lie dialgebra. We establish a structural result which relates the closure relation for our multiform to the Poisson involutivity of the Hamiltonians Hk\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_k$$\\end{document} and the so-called double zero on the Euler–Lagrange equations. The construction is extended to a general coadjoint orbit by using reduction from the free motion of the cotangent bundle of a Lie group. We illustrate the dialgebra construction of a Lagrangian multiform with the open Toda chain and the rational Gaudin model. The open Toda chain is built using two different Lie dialgebra structures on sl(N+1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {sl}(N+1)$$\\end{document}. The first one possesses a non-skew-symmetric r-matrix and falls within the Adler–Kostant–Symes scheme. The second one possesses a skew-symmetric r-matrix. In both cases, the connection with the well-known descriptions of the chain in Flaschka and canonical coordinates is provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call