Abstract

This paper presents an application of the Lagrangian Jacobian motion planning algorithm to non-holonomic robotic systems subordinated to affine Pfaffian constraints. A specific form of the algorithm, minimizing the energy of the trajectory variations, is applied to free-floating space manipulators equipped with 3 or 4 DOF on-board manipulator, and compared with the Jacobian pseudoinverse algorithm. To make the motion planning problem tractable the dynamics model of the space manipulator is transformed by feedback to a pre-normal form. Results of computer simulations show potential advantages of this Lagrangian Jacobian motion planning for applications in Space robotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.