Abstract

This paper addresses the motion planning problem of nonholonomic robotic systems. The system’s kinematics are described by a driftless control system with output. It is assumed that the control functions are represented in a parametric form, as truncated orthogonal series. A new motion planning algorithm is proposed based on the solution of a Lagrange-type optimisation problem stated in the linear approximation of the parametrised system. Performance of the algorithm is illustrated by numeric computations for a motion planning problem of the rolling ball.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call