Abstract

Concepts and tools from network theory, the so-called Lagrangian Flow Network framework, have been successfully used to obtain a coarse-grained description of transport by closed fluid flows. Here we explore the application of this methodology to open chaotic flows, and check it with numerical results for a model open flow, namely a jet with a localized wave perturbation. We find that network nodes with high values of out-degree and of finite-time entropy in the forward-in-time direction identify the location of the chaotic saddle and its stable manifold, whereas nodes with high in-degree and backwards finite-time entropy highlight the location of the saddle and its unstable manifold. The cyclic clustering coefficient, associated to the presence of periodic orbits, takes non-vanishing values at the location of the saddle itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.