Abstract

AbstractTsunami‐induced coastal currents are spectacular examples of nonlinear and chaotic phenomena. Due to their long periods, tsunamis transport substantial energy into coastal waters, and as this energy interacts with the ubiquitous irregularity of bathymetry, shear and turbulent features appear. The oscillatory character of a tsunami wave train leads to flow reversals, which in principle can spawn persistent turbulent coherent structures (e.g., large vortices or “whirlpools”) that can dominate damage and transport potential. However, no quantitative measurements exist to provide physical insight into this kind of turbulent variability, and no motion recordings are available to help elucidate how these vortical structures evolve and terminate. We report our measurements of currents in Ventura Harbor, California, generated by the 2015 Chilean M8.3 earthquake. We measured surface velocities using GPS drifters and image sequences of surface tracers deployed at a channel bifurcation, as the event unfolded. From the maps of the flow field, we find that a tsunami with a near‐shore amplitude of 30 cm at 6 m depth produced unexpectedly large currents up to 1.5 m/s, which is a fourfold increase over what simple linear scaling would suggest. Coherent turbulent structures appear throughout the event, across a wide range of scales, often generating the greatest local currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.