Abstract

We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface A of Picard number one we find the following: The Kummer variety K n A is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if n is a perfect square. And this is the case if and only if K n A carries a divisor with vanishing Beauville-Bogomolov square.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.