Abstract

The space L 2 ( 0 , 1 ) has a natural Riemannian structure on the basis of which we introduce an L 2 ( 0 , 1 ) -infinite-dimensional torus T . For a class of Hamiltonians defined on its cotangent bundle we establish existence of a viscosity solution for the cell problem on T or, equivalently, we prove a Weak KAM theorem. As an application, we obtain existence of absolute action-minimizing solutions of prescribed rotation number for the one-dimensional nonlinear Vlasov system with periodic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.