Abstract

This paper is concerned with the global optimization problem of minimizing a concave function subject to linear constraints and an additional facial reverse convex constraint. Here, the feasible set is the union of some faces of the polyhedron determined by the linear constraints. Several well-known mathematical problems can be written or transformed into the form considered. The paper addresses the Lagrangian duality of the problem. It is shown that, under slight assumptions, the duality gap can be closed with a finite dual multiplier. Finite methods based on solving concave minimization problems are also proposed. We deal with the advantages accrued when outer approximation, cutting plane, or branch-and-bound methods are used for solving these subproblems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.