Abstract

We study a model of crowd motion following a gradient vector field, with possibly additional interaction terms such as attraction/repulsion, and we present a numerical scheme for its solution through a Lagrangian discretization. The density constraint of the resulting particles is enforced by means of a partial optimal transport problem at each time step. We prove the convergence of the discrete measures to a solution of the continuous PDE describing the crowd motion in dimension one. In a second part, we show how a similar approach can be used to construct a Lagrangian discretization of a linear advection-diffusion equation. Both discretizations rely on the interpretation of the two equations (crowd motion and linear diffusion) as gradient flows in Wasserstein space. We provide also a numerical implementation in 2 dimensions to demonstrate the feasibility of the computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.