Abstract
Abstract Because of the increases in the realism of OGCMs and in the coverage of Lagrangian datasets in most of the world's oceans, assimilation of Lagrangian data in OGCMs emerges as a natural avenue to improve ocean state forecast with many potential practical applications, such as environmental pollutant transport, biological, and naval-related problems. In this study, a Lagrangian data assimilation method, which was introduced in prior studies in the context of single-layer quasigeostrophic and primitive equation models, is extended for use in multilayer OGCMs using statistical correlation coefficients between velocity fields in order to project the information from the data-containing layer to the other model layers. The efficiency of the assimilation scheme is tested using a set of twin experiments with a three-layer model, as a function of the layer in which the floats are launched and of the assimilation sampling period normalized by the Lagrangian time scale of motion. It is found that the assimilation scheme is effective provided that the correlation coefficient between the layer that contains the data and the others is high, and the data sampling period Δt is smaller than the Lagrangian time scale TL. When the assimilated data are taken in the first layer, which is the most energetic and is characterized by the fastest time scale, the assimilation is very efficient and gives relatively low errors also in the other layers (≈ 40% in the first 120 days) provided that Δt is small enough, Δt << TL. The assimilation is also efficient for data released in the third layer (errors < 60%), while the dependence on Δt is distinctively less marked for the same range of values, since the time scales of the deeper layer are significantly longer. Results for the intermediate layer show a similar insensitivity to Δt, but the errors are higher (exceeding 70%), because of the lower correlation with the other layers. These results suggest that the assimilation of deep-layer data with low energetics can be very effective, but it is strongly dependent on layer correlation. The methodology also remains quite robust to large deviations from geostrophy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.