Abstract

In this paper we show how to compute algorithmically the full set of algebraically independent constraints for singular mechanical and field-theoretical models with polynomial Lagrangians. If a model under consideration is not singular as a whole but has domains of dynamical (field) variables where its Lagrangian becomes singular, then our approach allows to detect such domains and compute the relevant constraints. In doing so, we assume that the Lagrangian of a model is a differential polynomial and apply the differential Thomas decomposition algorithm to the Euler–Lagrange equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.