Abstract

This study investigates Lagrangian coherent structures (LCS) in the planar elliptic restricted three-body problem (ER3BP), a generalization of the circular restricted three-body problem (CR3BP) that asks for the motion of a test particle in the presence of two elliptically orbiting point masses. Previous studies demonstrate that an understanding of transport phenomena in the CR3BP, an autonomous dynamical system (when viewed in a rotating frame), can be obtained through analysis of the stable and unstable manifolds of certain periodic solutions to the CR3BP equations of motion. These invariant manifolds form cylindrical tubes within surfaces of constant energy that act as separatrices between orbits with qualitatively different behaviors. The computation of LCS, a technique typically applied to fluid flows to identify transport barriers in the domains of time-dependent velocity fields, provides a convenient means of determining the time-dependent analogues of these invariant manifolds for the ER3BP, whose equations of motion contain an explicit dependency on the independent variable. As a direct application, this study uncovers the contribution of the planet Mercury to the Interplanetary Transport Network, a network of tubes through the solar system that can be exploited for the construction of low-fuel spacecraft mission trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.