Abstract

We point out that local minimizing curves, or troughs, of the smallest finite-time Lyapunov exponent (FTLE) field computed over a time interval [t(0), t] and graphed over trajectory positions at time t mark attracting Lagrangian coherent structures (LCSs) at t. For two-dimensional area-preserving flows, we conclude that computing the largest forward-time FTLE field by itself is sufficient for locating both repelling LCSs at t(0) and attracting LCSs at t. We illustrate our results on analytic examples, as well as on a two-dimensional experimental velocity field measured near a swimming jellyfish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.