Abstract

We discuss experimental and numerical studies of the effects of Lagrangian chaos (chaotic advection) on the stretching of a drop of an immiscible impurity in a flow. We argue that the standard capillary number used to describe this process is inadequate since it does not account for advection of a drop between regions of the flow with varying velocity gradient. Consequently, we propose a Lagrangian-generalized capillary number C L number based on finite-time Lyapunov exponents. We present preliminary tests of this formalism for the stretching of a single drop of oil in an oscillating vortex flow, which has been shown previously to exhibit Lagrangian chaos. Probability distribution functions (PDFs) of the stretching of this drop have features that are similar to PDFs of C L. We also discuss on-going experiments that we have begun on drop stretching in a blinking vortex flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.