Abstract

This paper studies the Lagrange stabilization of a class of nonlinear systems whose linear part has a singular system matrix and which have multiple periodic (in state) nonlinearities. Both state and output feedback Lagrange stabilization problems are considered. The paper develops a pseudo H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> control theory to solve these stabilization problems. In a similar fashion to the Strict Bounded Real Lemma in classic H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> control theory, a Pseudo Strict Bounded Real Lemma is established for systems with a single unstable pole. Sufficient conditions for the synthesis of state feedback and output feedback controllers are given to ensure that the closed-loop system is pseudo strict bounded real. The pseudo-H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> control approach is applied to solve state feedback and output feedback Lagrange stabilization problems for nonlinear systems with multiple nonlinearities. An example is given to illustrate the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.