Abstract
This paper focuses on Lagrange exponential stability and finite-time stabilization of Takagi-Sugeno (T-S) fuzzy memristive neural networks with discrete and distributed time-varying delays (DFMNNs). By resorting to theories of differential inclusions and the comparison strategy, an algebraic condition is developed to confirm Lagrange exponential stability of the underlying DFMNNs in Filippov's sense, and the exponentially attractive set is estimated. When external input is not considered, global exponential stability of DFMNNs is derived directly, which includes some existing ones as special cases. Furthermore, finite-time stabilization of the addressed DFMNNs is analyzed by exploiting inequality techniques and the comparison approach via designing a nonlinear state feedback controller. The boundedness assumption of activation functions is removed herein. Finally, two simulations are presented to demonstrate the validness of the outcomes, and an application is performed in pseudorandom number generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.