Abstract
Various characterizations of optimal solution sets of cone-constrained convex optimization problems are given. The results are expressed in terms of subgradients and Lagrange multipliers. We establish first that the Lagrangian function of a convex program is constant on the optimal solution set. This elementary property is then used to derive various simple Lagrange multiplier-based characterizations of the solution set. For a finite-dimensional convex program with inequality constraints, the characterizations illustrate that the active constraints with positive Lagrange multipliers at an optimal solution remain active at all optimal solutions of the program. The results are applied to derive corresponding Lagrange multiplier characterizations of the solution sets of semidefinite programs and fractional programs. Specific examples are given to illustrate the nature of the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.