Abstract

The Lagrange-mesh method is a powerful method to solve eigenequations written in configuration space. It is very easy to implement and very accurate. Using a Gauss quadrature rule, the method requires only the evaluation of the potential at some mesh points. The eigenfunctions are expanded in terms of regularized Lagrange functions which vanish at all mesh points except one. It is shown that this method can be adapted to solve eigenequations written in momentum space, keeping the convenience and the accuracy of the original technique. In particular, the kinetic operator is a diagonal matrix. Observables and wave functions in both configuration space and momentum space can also be easily computed with good accuracy using only eigenfunctions computed in the momentum space. The method is tested with Gaussian and Yukawa potentials, requiring, respectively, a small and a large mesh to reach convergence. Corresponding wave functions in both spaces are compared with each other using the Fourier transform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.