Abstract

Front propagation is a ubiquitous phenomenon. It arises in physical, biological and cross-disciplinary systems as diverse as flame propagation, superconductors, virus infections, cancer spread or transitions in human prehistory. Here we derive a single, approximate front speed from three rather different time-delayed reaction–diffusion models, suggesting a general law. According to our approximate speed, fronts are crucially driven by the lag times (periods during which individuals or particles do not move). Rather surprisingly, the approximate speed is able to explain the observed spread rates of completely different biophysical systems such as virus infections, the Neolithic transition in Europe, and postglacial tree recolonizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.