Abstract

Electron cyclotron harmonic (ECH) and whistler-mode chorus waves can contribute significantly to the magnetospheric dynamics. In the frequency-time spectrogram, ECH usually appears as a series of harmonic structureless bands, while chorus often exhibits successive discrete elements. Here, we present surprising observations by Van Allen Probes of lag-correlated rising tones of ECH and upper-band chorus waves. The time lags of ECH elements with respect to chorus elements range from 0.05 to 0.28 s, negatively correlated with the chorus peak amplitudes. The ECH elements seemingly emerge only when the chorus elements are sufficiently intense (peak amplitude >3 mV m−1), and their peak amplitudes are positively correlated. Our data and modeling suggest that upper-band chorus may promote the generation of ECH through rapidly precipitating the ∼keV electrons near the loss cone. This phenomenon implies that ECH and chorus may not grow independently but competitively or collaboratively gain energy from hot electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.