Abstract

Deep learning in computer vision is becoming increasingly popular and useful for tracking object movement in many application areas, due to data collection burgeoning from the rise of the Internet of Things (IoT) and Big Data. So far, computer vision has been used in industry predominantly for quality inspection purposes such as surface defect detection; however, an emergent research area is the application for process monitoring involving tracking moving machinery in real time. In steelmaking, the deployment of computer vision for process monitoring is hindered by harsh environments, poor lighting conditions and fume presence. Therefore, application of computer vision remains unplumbed. This paper proposes a novel method for tracking hot metal ladles during pouring in poor lighting. The proposed method uses contrast-limited adaptive histogram equalisation (CLAHE) for contrast enhancement, Mask R-CNN for segmentation prediction and Kalman filters for improving predictions. Pixel-level tracking enables pouring height and rotation angle estimation which are controllable parameters. Flame severity is also estimated to indicate process quality. The method has been validated with real data collected from ladle pours. Currently, no publications presenting a method for tracking ladle pours exist. The model achieved a mean average precision (mAP) of 0.61 by the Microsoft Common Objects in Context (MSCOCO) standard. It measures key process parameters and process quality in processes with high variability, which significantly contributes to process enhancement through root-cause analysis, process optimisation and predictive maintenance. With real-time tracking, predictions could automate ladle controls for closed-loop control to minimise emissions and eliminate variability from human error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.