Abstract
The design, synthesis, and characterization of two novel nonfullerene acceptors (M8 and M34) based on ladder-type heteroheptacenes with different heterocycles are reported. Replacing the furan heterocycles with the thiophene heterocycles in the heteroheptacene backbone leads to a hypsochromically shifted absorption band and greatly improved carrier transport for the resulting nonfullerene acceptor (M34) although the π-π-stacking distances are barely affected. Bulk-heterojunction polymer solar cells fabricated from M34 and a wide band gap polymer (PM6) as the donor showed a best power conversion efficiency (PCE) of 15.24 % with an open circuit voltage (VOC ) of 0.91 V, much higher than a PCE of 4.21 % and a VOC of 0.83 V for the counterparts based on M8:PM6. These results highlight the importance of key atoms in the construction of high-performance nonfullerene acceptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.