Abstract

It is well known that asymptotically flat black holes in generalrelativity have a vanishing static, conservative tidal response. We show that this is a result of linearly realized symmetries governingstatic (spin 0,1,2)perturbations around black holes. The symmetries have a geometric origin: in the scalar case, they arise from the (E)AdS isometries of a dimensionally reduced black hole spacetime. Underlying the symmetries is a ladder structure which can be used to construct the full tower of solutions,and derive their general properties: (1) solutions that decay withradius spontaneously break the symmetries, and mustdiverge at the horizon;(2) solutions regular at the horizon respect the symmetries, andtake the form of a finite polynomial that grows with radius.Taken together, these two properties imply that static response coefficients — and in particular Love numbers — vanish. Moreover, property (1) is consistent with the absence of black holes with linear (perturbative) hair. We also discuss the manifestation of these symmetries in the effective point particle description of a black hole, showing explicitly that for scalar probesthe worldline couplings associated with a non-trivial tidal response and scalar hair must vanish in order for the symmetries to be preserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.