Abstract

Let $\{S_n: n \geq 0\}$ be a random walk having normally distributed increments with mean $\theta$ and variance 1, and let $\tau$ be the time at which the random walk first takes a positive value, so that $S_{\tau}$ is the first ladder height. Then the expected value $E_{\theta} S_{\tau}$, originally defined for positive $\theta$, maybe extended to be an analytic function of the complex variable $\theta$ throughout the entire complex plane, with the exception of certain branch point sin-gularities. In particular, the coefficients in a Taylor expansion about $\theta = 0$ may be written explicitly as simple expressions involving the Riemann zeta function. Previously only the first coefficient of the series developed here was known; this term has been used extensively in developing approximations for boundary crossing problems for Gaussian random walks. Knowledge of the complete series makes more refined results possible; we apply it to derive asymptotics for boundary crossing probabilities and the limiting expected overshoot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.