Abstract

In this paper, we introduce lacunary statistical ward continuity in a 2-normed space. A function f defined on a subset E of a 2-normed space X is lacunary statistically ward continuous if it preserves lacunary statistically quasi-Cauchy sequences of points in E where a sequence (xk) of points in X is lacunary statistically quasi-Cauchy if limr?1 1/hr |{k?Ir : ||xk+1 - xk, z||? ?}| = 0 for every positive real number ? and z ? X, and (kr) is an increasing sequence of positive integers such that k0 = 0 and hr = kr - kr-1 ? ? as r ? ?, Ir = (kr-1, kr]. We investigate not only lacunary statistical ward continuity, but also some other kinds of continuities in 2-normed spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.