Abstract

In this study, with combined carboxymethyl cellulose agar plate, xylan agar plate and filter paper hydrolysis assay, a novel cellulase and xylanase-producing strain identified as Bacillus sp. was isolated. Using lactose as the only carbon source, a complete and balanced lignocellulolytic enzyme system containing at least endoglucanase (9.6 U/ml), exoglucanase (0.8 U/ml), Fpase (1.4 U/ml), xylanase (3.8 U/ml) and β-glucosidase (1.2 U/ml) was produced. Interestingly, a zymogram of the crude culture supernatant displayed a multifunctional lignocellulolytic enzyme system including at least four bonds with both endoglucanase activity and xylanase activity at 21.2, 23.8, 28.9 and 31.2 kDa, respectively, indicating that these enzymes might be bifunctional. More gratifyingly, according to the binding affinity analysis and scanning electron microscopy, the crude enzyme complex produced by strain BS-5 was capable of hydrolyzing not only pure insoluble polysaccharides, but also agricultural residues such as corn cob. At 5% substrate concentration and 20 FPU/g enzyme loading, the reducing sugar was 350.8 mg/g of alkali-pretreated corn cob after 72 h enzymatic hydrolysis. These results suggested that this strain could be a good candidate for the development of a more cost-effective and efficient lignocellulolytic enzyme cocktail for the saccharification of lignocellulosic biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call