Abstract

The present study aimed to evaluate the lactose hydrolysis conditions from “coalho” cheese whey using β-galactosidase (β-gal) produced by Kluyveromyces lactis immobilized with sodium alginate. Three sodium alginate-based immobilization systems were evaluated (0.5, 0.7, and 1% w/v) for maximizing the immobilization yield (Y), efficiency (EM), and recovered activity (ar). The lactose hydrolysis capacity of the immobilized form of β-gal was determined, and simulated environments were used to assess the preservation of the immobilized enzyme in the gastrointestinal tract. The results showed that β-gal immobilization with 1% (w/v) sodium alginate presented the best results (EM of 66%, Y of 41%, and ar of 65%). The immobilization system maintained the highest pH stability in the range between 5.0 and 7.0, with the highest relative activity obtained under pH 5 conditions. The temperature stability was also favored by immobilization at 50 °C for 30 min was obtained a relative activity of 180.0 ± 1.37%. In 6 h, the immobilized β-gal was able to hydrolyze 46% of the initial lactose content. For the gastrointestinal simulations, around 40% of the activity was preserved after 2 h. Overall, the results described here are promising for the industrial applications of β-galactosidase from K. lactis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.