Abstract

This study aimed to survey the content of Maillard reaction products in different UHT-treated milk products and to assess how formation of these products and lysine blockage is affected by the composition. For this purpose, different commercial UHT milks including milk (whole, semi-skimmed and skimmed), lactose-hydrolyzed, protein-fortified, lactose-hydrolyzed protein fortified and follow-on infant milks were analyzed. Among the Maillard reaction products, dicarbonyl compounds, 5-hydroxymethylfurfural, furosine, N-ε-carboxymethyllysine and N-ε-carboxyethyllysine were monitored. The results showed that fortification of UHT milks with protein and carbohydrates as well as hydrolysis of lactose promoted the Maillard reaction. Among the dicarbonyl compounds, 3-deoxyglucosone formation, which was the dominant dicarbonyl compound in milks, varied between 3.12–12.67 mg/L, 13.45–21.98 mg/L and 4.59–40.38 mg/L in lactose hydrolyzed, lactose-hydrolyzed protein-fortified and follow-on infant milks whereas it was 0.22-0.40 mg/L in milks, respectively. Similarly, 5-hydroxymethylfurfural could not be detected in milks, whereas mean 5-hydroxymethylfurfural concentration was found to be 56.3 mg/L and 31.5 mg/L in protein-fortified milks and lactose-hydrolyzed protein-fortified milks, respectively. Accordingly, % blocked lysine, furosine, N-ε-carboxymethyllysine and N-ε-carboxyethyllysine content of different UHT milks were found to be significantly higher than milks (p < 0.05). This is the first study reporting the Maillard reaction products in protein-fortified and infant milks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.