Abstract

A new β-galactosidase based biocatalyst consisting of whole Kluyveromyces lactis cells entrapped in calcium alginate beads has been developed. Formulative parameters and their effects on the enzymatic activity were studied by a 2 3 full factorial experimental design. Enzymatic activity showed a bimodal trend progressing with time and appeared to be influenced by the structure and dimension of the surrounding gel. Small particles became the choice for scale-up purposes. Remarkably, it was demonstrated that β-galactosidase activity per unit of cell biomass was higher in alginate-immobilized than in free-growing cells in the same medium. Milk whey saccharification by the ethanol-permeabilized cells was studied in packed bed bioreactors. Permeabilization increased the lactose hydrolysis rate and prevented ethanol fermentation allowing 99.5% of milk whey lactose to be hydrolyzed at 30°C for 30 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.