Abstract

Proteins have recently caught attention as potential excipients for amorphous solid dispersions (ASDs) to improve oral bioavailability of poorly water-soluble drugs. Notably, the studies have highlighted whey protein isolates, particularly β-lactoglobulin (BLG), as promising candidates in amorphous stabilization, dissolution and solubility enhancement, achieving drug loadings of 50 wt% and higher. Consequently, investigations into the mechanisms underlying the solid-state stabilization of amorphous drugs and the enhancement of drug solubility in solution have been conducted. This graphical review provides a comprehensive overview of recent findings concerning BLG-based ASDs. Firstly, the dissolution performance of BLG-based ASDs is compared to more traditional polymer-based ASDs. Secondly, the drug loading onto BLG and the resulting amorphous stabilization mechanisms is summarized. Thirdly, interactions between BLG and drug molecules in solution are described as the mechanisms governing the improvement of drug solubility. Lastly, we outline the impact of the spray drying process on the secondary structure of BLG, and the resulting differences in amorphous stabilization and drug dissolution performance between α-helix-rich and β-sheet-rich BLG-based ASDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.