Abstract

BackgroundControl of periodontal tissue inflammation during orthodontic treatment is very important in achieving a favourable therapeutic goal. We previously demonstrated that orally applied bovine lactoferrin (bLF) inhibited LPS-induced bone resorption but not orthodontic force-induced tooth movement in vivo. This study is designed to examine the underlying mechanism of it. MethodsWe examined the inhibitory effects of bLF on the expression of RANKL, OPG, TNF-α and COX-2 in osteoblasts loaded with compressive stress (CS) in comparison with LPS stimulated osteoblasts. Formation of osteoclasts was evaluated by co-culture system. ResultsBoth CS- and LPS-applications upregulated COX-2 and RANKL but downregulated OPG. TNF-α was upregulated in LPS-stimulated osteoblasts but downregulated in CS-loaded osteoblasts. NS398 (a specific inhibitor of COX-2) significantly inhibited CS-induced RANKL-upregulation but not LPS-induced RANKL upregulation, indicating a critical role of COX-2/PGE2 pathway in CS-induced osteoclastogenesis. bLF significantly downregulated LPS-induced upregulation of RANKL and eliminated OPG suppression but not affected in CS-induced changes. Moreover, bLF significantly decreased LPS-induced osteoclast formation, whereas bLF had no effect on PGE2-induced osteoclast formation. ConclusionsbLF can effectively suppress harmful bone destruction associated with periodontitis without inhibiting bone remodelling by CS-loading. Therefore, oral administration of bLF may be highly beneficial for control of periodontitis in orthodontic patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.