Abstract

Cell-penetrating peptides (CPPs) are small peptides which help intracellular delivery of functional macromolecules, including DNAs, RNAs, and proteins, across the cell membrane and into the cytosol, and even into the nucleus in some cases. Delivery of macromolecules can facilitate transfection, aid in gene therapy and transgenesis, and alter gene expression. L5a (RRWQW), originally derived from bovine lactoferricin, is one kind of CPPs which can promote cellular uptake of plasmid DNA and enters cells via direct membrane translocation. The peptide complexes noncovalently with DNA over a short incubation period. DNA plasmid and L5a complex stability is confirmed by a decrease in mobility in a gel retardation assay, and successful transfection is proven by the detection of a reporter gene in cells using fluorescent microscopy. Here, we describe methods to study noncovalent interactions between L5a and plasmid DNA, and the delivery of L5a/DNA complexes into cells. L5a is the one of the smallest CPPs discovered to date, providing a small delivery vehicle for macromolecules in mammalian cells. A small vehicle which can enter the nucleus is ideal for efficient gene uptake, transfer, and therapy. It is simple to complex with DNA plasmids, and its nature allows mammalian cells to be easily transfected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.