Abstract

Spinach (Spinacia oleracea L.), a green leafy vegetable, is widely regarded as a functional food due to its biological activities; however, to the best of our knowledge, there are no previous studies that have investigated the protective effects of fermented spinach against endothelial dysfunction and its underlying mechanisms. Therefore, this study investigated the effects and possible mechanisms of action of fresh spinach juice (S.juice) and fermented S.juice on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs). The HUVECs were treated with S.juice and fermented S.juice for 18 h before LPS exposure, and the levels of cytokines and chemokines, such as monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6), were detected using enzyme-linked immunosorbent assays (ELISA). Furthermore, to examine the changes in inflammatory responses to the two treatments, immunofluorescence analysis was used to visualize the nuclear translocation of nuclear factor-κB (NF-κB). Western blot analysis was also performed to detect the differences in the expression of endothelial cell adhesion molecules, specifically vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Both S.juice and fermented S.juice inhibited the LPS-induced expression of MCP-1 and IL-6, and suppressed VCAM-1 and ICAM-1. Additionally, fermented S.juice inhibited the LPS-induced activation of NF-κB and degradation of the inhibitor of NF-κB (IκBα) in an LPS dose-dependent manner. These results suggest that the anti-inflammatory effect of vitamin K2-enriched fermented S.juice is mediated by the suppression of the NF-κB pathway, suggesting its potential as a novel therapeutic candidate for inflammatory cardiovascular disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call