Abstract

Lactobacillus reuteri metabolizes glycerol through propanediol-utilization (Pdu) pathway to 1,3-propanediol (1,3-PD) via 3-hydroxypropionaldehyde (3-HPA) as intermediate. In the resting cells, the oxidized co-factor obtained in the reaction is regenerated by simultaneous oxidation of 3-HPA to 3-hydroxypropionic acid (3-HP) using propionaldehyde dehydrogenase (PduP), phosphotransacylase (PduL) and propionate kinase (PduW). We have earlier shown that the use of resting cells of recombinant Escherichia coli expressing the oxidative pathway gives the highest theoretical yield of 1 mol 3-HP per mol 3-HPA but is limited by cofactor depletion. In the present study, the gene encoding the enzyme NAD(P)H oxidase (LreuNox) that utilizes molecular oxygen as substrate, was isolated from L. reuteri and heterologously overexpressed in E. coli. LreuNox has a pH optimum of 6 and exhibits Vmax of 101.1 ± 2.2 U/mg with NADH, which is 30% higher than that for NADPH. Co-expression of LreuNox with PduP, PduL and PduW in E. coli enhances the biocatalytic lifetime as well as productivity at least two-fold compared to that achieved without co-factor regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.