Abstract

Increasing reports of pregnancy events leading to maternal microbiome dysbiosis (MMD) show strong correlates with atypical neurodevelopmental outcomes. However, the mechanism(s) driving microbiome-mediated behavioral dysfunction in offspring remain understudied. Here, we demonstrate the presence of a novel gut commensal bacterium strain, Lactobacillus murinus HU-1, was sufficient to rescue behavioral deficits and brain region-specific microglial activationobserved in MMD-reared murine offspring. We furtheridentified a postnatal window of susceptibility that could prevent social impairments with timed maternal administration of the symbiotic bacterium. Moreover, MMD increased expression of microglial senescence genes, Trp53 and Il1β, and Cx3cr1 protein in the prefrontal cortex, which correlated with dysfunctional modeling of synapses and accompanied dysbiosis-induced microglial activation. MMD male offspring harboring Lactobacillus murinus HU-1 or lacking Cx3cr1 showed amelioration of these effects. The current study describes a new avenue of influence by which maternally transferred Lactobacillus drives proper development of social behavior in the offspring through microglia-specific regulation of Cx3cr1 signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.