Abstract

ABSTRACT Probiotic intervention has beneficial effects on host brain function and behavior via regulating microbiota-gut-brain axis; however, the underlying mechanism is not yet understood. Herein, we investigated that the effects of Lactobacillus plantarum DP189 (DP189) administration in preventing cognitive dysfunction and pathology of Alzheimer’s disease (AD) in D-galactose (D-gal) and AlCl3-induced AD model mice. After L. plantarum DP189 intervention for 10 weeks, we assessed cognitive behavior, neurotransmitter expression, histological changes, microbial communities, and the mechanisms underlying the disease in AD model mice. The results showed that L. plantarum DP189 intervention prevented cognitive dysfunction by behavioral test. Increased levels of serotonin, dopamine, and gamma-aminobutyric acid positively affected the pathological processes by ameliorating neuronal damage, beta-amyloid deposition, and tau pathology. L. plantarum DP189 intervention simultaneously modulated the gut microbial communities to alleviate gut dysbiosis. Moreover, L. plantarum DP189 inhibited tau hyperphosphorylation by regulating the PI3 K/Akt/GSK-3β pathway. These findings indicated that L. plantarum DP189 intervention is a promising therapeutic strategy to prevent the onset and development of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call