Abstract

Probiotics are efficacious in the treatment of inflammatory bowel disease. However, the precise mechanisms remain unknown. To determine whether probiotic Lactobacillus plantarum (LP) ameliorates colonic epithelial barrier dysfunction present in interleukin-10 knockout (IL-10⁻(/)⁻) mice, IL-10⁻(/)⁻ and wild-type mice received LP or the vehicle for 4 wk. Colitis was assessed by histological scores and clinical manifestation, and gut paracellular permeability was measured by Ussing chamber. Oligopeptide transporter 1 (PepT1)-mediated transepithelial transport was evaluated by measuring the plasma cephalexin concentration. The expression and distribution of apical junctional complex (AJC) proteins and PepT1 were determined by Western blotting and immunofluorescence and their mRNA by reverse transcriptase-PCR. Spontaneous colitis was observed in all IL-10⁻(/)⁻ mice in which paracellular permeability was increased, in conjunction with decreased expression and redistribution of zonula occludens-1, occludin, claudin-1, and β-catenin. PepT1 expression was increased, accompanied with an enhanced cephalexin transport. Colonic epithelial barrier dysfunction was further confirmed by increased bacterial translocation and proinflammatory cytokine production. Treatment with LP decreased colonic paracellular permeability with restoration of expression and distribution of AJC proteins and partially prevented PepT1 expression and cephalexin transport in IL-10⁻(/)⁻ mice. Moreover, treatment with LP also prevented bacterial translocation and proinflammatory cytokine production in IL-10⁻(/)⁻ mice. Results from this study indicated that treatment with LP may ameliorate colonic epithelial barrier dysfunction in IL-10⁻(/)⁻ mice, by modulating the AJC- and PepT1-mediated transepithelial transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.