Abstract

AimThe purpose of this study is to study the antioxidant effect of Lactobacillus fermentum CQPC08 (CQPC08) on exercise-induced fatigue, and the beneficial intervention of GOS on CQPC08.MethodsWe use the treadmill to establish a fatigue model caused by exercise, and perform drug treatment after exercise. We tested the exhaustive exercise time of mice; investigated the changes of mice body weight, liver index, histopathology, serum biochemical indicators and mRNA expression levels of oxidative and inflammation-related genes; and assessed the potential fatigue inhibitory effect of CQPC08, and the anti-oxidation effect of the combination of GOS and CQPC08.ResultsThe results suggest that CQPC08 and combination with GOS reduces fatigue-induced oxidative damage of the liver, and it decreases blood urea nitrogen (BUN), lactic acid (LA), glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), malonaldehyde (MDA), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in serum. Higher levels of serum catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were found. Treatment with the CQPC08 and combination with GOS correlates with lower relative mRNA expression levels of neuronal NOS (nNOS), iNOS, and TNF-α, and with higher mRNA expression levels of catalase and copper/zinc (Cu/Zn) and manganese (Mn) SOD enzymes in the liver and muscles.ConclusionThese results suggest that CQPC08 can resolve exercise-induced fatigue by improving antioxidant ability in mice, and the combination of GOS and CQPC08 enhances this ability of CQPC08.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call