Abstract

BackgroundProbiotic microorganisms are receiving increasing interest for use in the prevention, treatment, or dietary management of certain diseases, including antibiotic-associated diarrhea (AAD). Clostridium difficile is the most common cause of AAD and the resulting C. difficile – mediated infection (CDI), is potentially deadly. C. difficile associated diarrhea (CDAD) is manifested by severe inflammation and colitis, mostly due to the release of two exotoxins by C. difficile causing destruction of epithelial cells in the intestine. The aim of this study was to determine the effect of probiotic bacteria Lactobacillus delbrueckii ssp. bulgaricus B-30892 (LDB B-30892) on C. difficile-mediated cytotoxicity using Caco-2 cells as a model.MethodsExperiments were carried out to test if the cytotoxicity induced by C. difficile-conditioned-medium on Caco-2 cells can be altered by cell-free supernatant (CFS) from LDB B-30892 in different dilutions (1:2 to 1:2048). In a similar experimental setup, comparative evaluations of other probiotic strains were made by contrasting the results from these strains with the results from LDB B-30892, specifically the ability to affect C. difficile induced cytotoxicity on Caco-2 monolayers. Adhesion assays followed by quantitative analysis by Giemsa staining were conducted to test if the CFSs from LDB B-30892 and other probiotic test strains have the capability to alter the adhesion of C. difficile to the Caco-2 monolayer. Experiments were also performed to evaluate if LDB B-30892 or its released components have any bactericidal effect on C. difficile.Results and discussionCo-culturing of LDB B-30892 with C. difficile inhibited the C. difficile-mediated cytotoxicity on Caco-2 cells. When CFS from LDB B-30892-C. difficile co-culture was administered (up to a dilution of 1:16) on Caco-2 monolayer, there were no signs of cytotoxicity. When CFS from separately grown LDB B-30892 was mixed with the cell-free toxin preparation (CFT) of separately cultured C. difficile, the LDB B-30892 CFS was inhibitory to C. difficile CFT-mediated cytotoxicity at a ratio of 1:8 (LDB B-30892 CFS:C. difficile CFT). We failed to find any similar inhibition of C. difficile-mediated cytotoxicity when other probiotic organisms were tested in parallel to LDB B-30892. Our data of cytotoxicity experiments suggest that LDB B-30892 releases one or more bioactive component(s) into the CFS, which neutralizes the cytotoxicity induced by C. difficile, probably by inactivating its toxin(s). Our data also indicate that CFS from LDB B-30892 reduced the adhesion of C. difficile by 81%, which is significantly (P <0.01) higher than all other probiotic organisms tested in this study.ConclusionThis study reveals the very first findings that Lactobacillus delbrueckii ssp. bulgaricus B-30892 (LDB B-30892) can eliminate C. difficile-mediated cytotoxicity, using Caco-2 cells as a model. The study also demonstrates that LDB B-30892 can reduce the colonization of C. difficile cells in colorectal cells. More study is warranted to elucidate the specific mechanism of action of such reduction of cytotoxicity and colonization.

Highlights

  • Probiotic microorganisms are receiving increasing interest for use in the prevention, treatment, or dietary management of certain diseases, including antibiotic-associated diarrhea (AAD)

  • The study demonstrates that LDB B-30892 can reduce the colonization of C. difficile cells in colorectal cells

  • We evaluated the efficacy of Lactobacillus delbrueckii ssp. bulgaricus B-30892, a probiotic bacteria found to be effective in inflammatory bowel disease as well as diarrhea, AAD, and C. difficile associated diarrhea (CDAD) [28,29], on C. difficilemediated cytotoxicity on human enterocyte-like Caco-2 cell model

Read more

Summary

Introduction

Probiotic microorganisms are receiving increasing interest for use in the prevention, treatment, or dietary management of certain diseases, including antibiotic-associated diarrhea (AAD). Clostridium difficile is the most common cause of AAD and the resulting C. difficile – mediated infection (CDI), is potentially deadly. C. difficile associated diarrhea (CDAD) is manifested by severe inflammation and colitis, mostly due to the release of two exotoxins by C. difficile causing destruction of epithelial cells in the intestine. Clostridium difficile is responsible for a potentially deadly bacterial infection and it is the most common etiologic agent of AAD or more precisely, a C. difficile associated diarrhea or colitis (CDAD or CDAC), resulting in severe diarrhea and inflammation [4,5]. Inflammatory events in the intestine are implicated as hallmarks of C. difficile infection (CDI) along with cytotoxicity, apoptotic and necrotic cell death [7]. Severe damage is done to villous enterocytes by PMN-derived inflammatory mediators, which act on these epithelial cells causing acute destruction and necrosis [14,15]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.