Abstract

It is known that ethanol strongly interferes with the development and activity of lactic acid bacteria in wine. In this work, it was observed that membrane composition was dependent of ethanol concentration and cell physiological state. The protein electrophoretic profile was modified in the membranes of Oenococcus oeni cultured in presence of 8 and 10% ethanol. Concerning the membrane lipid composition, it was observed that O. oeni maintained a high level of phospholipid biosynthesis via the relative increased biosynthesis of phosphoethanolamine and sphingomyelin in presence of ethanol. On the other hand, ethanol induced an increase in the membrane lactobacillic acid percentage at the expense of cis-vaccenic acid. This increased synthesis of lactobacillic acid appears as the more significant change induced by ethanol in O. oeni membrane. The increase of lactobacillic acid in the membrane of O. oeni clearly appears as a factor that provides protection against the toxic effect of ethanol, balancing the increase of membrane fluidity normally attributed to ethanol. The results presented in this paper constitute evidence that lactobacillic acid may have a part in the survival and or adaptive mechanisms developed by O. oeni under culture adverse conditions, allowing these bacteria to maintain their activity in the presence of ethanol, namely performing malolactic fermentation in wine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.