Abstract

A novel amperometric biosensor highly selective to l-lactate has been developed using l-lactate-cytochrome c oxidoreductase (flavocytochrome b2) isolated for the first time from thermotolerant methylotrophic yeast Hansenula polymorpha as biorecognition element. Different immobilization methods and low-molecular free-diffusing redox mediators have been tested for optimising the electrochemical communication between the immobilized enzyme and the electrode surface. Moreover, the possibility of direct electron transfer from the reduced form of FCb2 to carbon electrodes has been evaluated. The bioanalytical properties of FCb2-based biosensors, such as signal rise time, dynamic range, dependence of the sensor output on the pH value, the temperature and the storage stability were investigated, and the proposed biosensor demonstrated a very fast response and a high sensitivity and selectivity for l-lactate determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.