Abstract

Among the many disorders of fatty acid beta-oxidation known today, the disorders of long-chain fatty acid oxidation are the most severe and life-threatening. One remarkable abnormality, not observed in, for instance, medium-chain acyl-CoA dehydrogenase deficiency, is the moderate to severe lactic acidaemia in long-chain fatty acid beta-oxidation-deficient patients, suggesting that oxidation of pyruvate is also compromised. In order to understand the underlying basis of the lactic acidaemia in these patients, we have studied the formation of L-lactate and pyruvate in cultured skin fibroblasts incubated with D-glucose. All long-chain fatty acid beta-oxidation-deficient cell lines studied were found to show a moderate elevation of lactate when compared with control and medium-chain acyl-CoA dehydrogenase-deficient fibroblasts. Interestingly, differences were found between cells deficient in long-chain 3-hydroxyacyl-CoA dehydrogenase and very-long-chain acyl-CoA dehydrogenase, suggesting that saturated acyl-CoA esters and their 3-hydroxyacyl-CoA derivatives affect pyruvate metabolism differently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.