Abstract

Lactic acid, the end product of glycolysis, has emerged as an immune-modulating metabolite in various diseases. In this study, we aimed to examine whether lactic acid contributes to the disease pathogenesis of choroidal neovascularization (CNV) and to investigate the role of macrophages in CNV pathogenesis. CNV was induced by laser photocoagulation in C57BL/6J mice. Lactic acid concentration was measured in the RPE-choroid region. Macrophage infiltration and VEGF were quantified by flow cytometry. VEGF-positive areas and CNV lesions were measured by flat-mount immunofluorescence staining. To inhibit lactic acid uptake in vivo, alpha-cyano-4-hydroxycinnamic acid (α-CHC), a monocarboxylate transporter (MCT) blocker, was injected intravitreally 1 day after laser. VEGF productions were measured in ARPE-19, THP-1 cells, and human umbilical vein endothelial cells (HUVECs) by quantitative PCR and ELISA. Angiogenic activity of lactic acid-treated macrophages was assessed by HUVEC tube formation assay. Lactic acid was significantly increased in the RPE-choroid region of CNV-induced mice. Lactic acid upregulated VEGFA mRNA and VEGF protein expressions in THP-1 macrophages, but did not in ARPE-19 or HUVECs. THP-1 macrophages treated with lactic acid increased the angiogenesis of endothelial cells independent of MCT activity. Intravitreal injection of α-CHC substantially reduced the VEGF-positive area that colocalized with F4/80-positive macrophages. CNV lesions were also significantly reduced following α-CHC injection compared with vehicle-injected controls. To our knowledge, these results show for the first time the role of lactic acid in facilitating neovascularization through macrophage-induced angiogenesis. We suggest that targeting macrophage metabolism can be a promising strategy for CNV treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.