Abstract

AbstractBACKGROUND: Food waste generally has a high starch content and is rich in nutritional compounds, including lipids and proteins. It therefore represents a potential renewable resource. In this study, dining‐hall food waste was used as a substrate for lactic acid production, and response surface methodology was employed to optimise the fermentation conditions.RESULTS: Lactic acid biosynthesis was significantly affected by the interaction of protease and temperature. Protease, temperature and CaCO3 had significant linear effects on lactic acid production, while α‐amylase and yeast extract had insignificant effects. The optimal conditions were found to be an α‐amylase activity of 13.86 U g−1 dried food waste, a protease activity of 2.12 U g−1 dried food waste, a temperature of 29.31 °C and a CaCO3 concentration of 62.67 g L−1, which resulted in a maximum lactic acid concentration of 98.51 g L−1 (88.75% yield). An increase in inoculum size would be appropriate for accelerating the depletion of initial soluble carbohydrate to enhance the efficiency of α‐amylase in dining‐hall food waste fermentation.CONCLUSION: A suitable regression model for lactic acid production was developed based on the experimental results. Dining‐hall food waste was found to be a good substrate for lactic acid fermentation with high product yield and without nutrient supplementation. Copyright © 2008 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call