Abstract

Invasion involves tumor cells altering their cell-matrix interactions and acquiring motility for metastatic spread. Invasive tumor cells exhibit dysregulated metabolism and enhanced aerobic glycolysis, leading to nutrient depletion, hypoxia, and lactic acid production. Lactic acid is a byproduct of glycolysis capable of promoting oncogenic progression, but its role in tumor invasion is unclear. A growing number of studies have demonstrated that lactic acid regulates the degradation of collagen Ⅳ, collagen Ⅶ, and glycoprotein; the synthesis of collagen Ⅰ; and multiple signaling pathways, including TGF-β/Smad, Wnt/β-catenin, IL-6/STAT3, and HGF/MET, which are associated with basement membrane (BM) remodeling and epithelial-mesenchymal transition (EMT), two hallmarks of the tumor invasive process. In the present review, we summarize BM remodeling and EMT in tumor invasion, discuss the emerging roles and molecular mechanisms of lactic acid in these processes, and provide insights for further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.