Abstract
Lactate is transported across cell membranes by diffusional, saturable cotransport with protons, mediated by monocarboxylate transporters (MCTs). This transport is bidirectional and in the absence of a transcellular H(+) gradient, it can increase the intracellular concentration of lactate up to but not beyond the extracellular level (or vice versa). If extra- and intracellular pH differ, however, the equilibrium level is determined by the gradients of both lactate anions and protons. Rates of lactate uptake are determined most often by measuring uptake of labeled lactate, e.g., [U-14C]lactate. In the case of lactate and other compounds that are metabolized, errors are introduced easily because continuing inwardly directed diffusional net transport of label can be achieved by intracellular metabolism, reducing the intracellular level of the nonmetabolized lactate and thus maintaining a concentration gradient between extra- and intracellular concentrations of the nonmetabolized compound (metabolism-driven uptake). For measurement of facilitated diffusion kinetics, it is essential that the period during which the uptake is measured is short enough that little or no metabolism-driven uptake contributes to the measured uptake (or that first-order regression analysis is carried out to obtain initial uptake rates from nonlinear traces). To achieve initial uptake rates, incubation periods well below 1 min are generally required. Lactate uptake is fast in astrocytes, which express powerful, low-affinity MCTs, i.e., MCT1 and MCT4. Due to the low affinity of these transporters, they respond to increased lactate gradients with enhanced transporter activity. The predominant MCT in neurons is the high-affinity MCT2, which can only increase its activity to a limited extent in the face of an increased lactate gradient. This is reflected by a high-affinity lactate uptake, although most investigators also have demonstrated a component of lactate uptake with lower affinity. In both neurons and astrocytes, however, facilitated diffusion is fast enough that under most conditions lactate fluxes will be determined mainly by the rate of metabolism-driven uptake, and MCT-mediated transport only will be rate-limiting after establishment of large transmembrane gradients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.