Abstract

To study the local tissue lactate production in the normal state and its possible disturbances in insulin resistance, rates of lactate release from adipose tissue (AT) and skeletal muscle (SM) were compared postabsorptively and during a hyperinsulinemic euglycemic clamp in 11 healthy nonobese and 11 insulin-resistant obese women. A combination of microdialysis, to measure interstitial lactate, and the 133Xe clearance technique, to determine local blood flow, were used. In the controls, local blood flow increased by 40% in SM (P<0.05) and remained unchanged in AT, whereas the interstitial-plasma difference in lactate doubled in AT (P<0.005) and was unaffected in SM during hyperinsulinemia. In the obese, blood flow and interstitial-plasma difference in lactate remained unchanged in both tissues during hyperinsulinemia. The lactate release (micromol100 g-1min-1) was 1.17+/-0.22 in SM and 0.43+/-0.11 in AT among the controls (P<0.01) and 0.86+/-0.23 in SM and 0.83+/-0.25 in AT among the obese women in the postabsorptive state. During insulin infusion, lactate release in the controls increased to 1.92+/-0.26 in SM (P<0.005) and to 1.14+/-0.22 in AT (P<0.005) but remained unchanged in the obese women. It is concluded that AT and SM are both significant sources of lactate release postabsorptively, and AT is at least as responsive to insulin as SM. The ability to increase lactate release in response to insulin is impaired in AT and SM in insulin-resistant obese women, involving defective insulin regulation of both tissue lactate metabolism and local blood flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call