Abstract

Numerous evidence indicates that inflammation in adipose tissue is the primary cause of systemic insulin resistance induced by obesity. Obesity-associated changes in circulating LPS level and hypoxia/HIF-1α activation have been proposed to be involved in boosting obesity-induced inflammation. However, there is poor understanding of what triggers obesity-induced inflammation. In this study, we pinpoint lactate as a key trigger to mediate obesity-induced inflammation and systemic insulin resistance. Specific deletion of Slc16a1 that encodes MCT1, the primary lactate transporter in adipose tissues, robustly elevates blood levels of proinflammatory cytokines and aggravates systemic insulin resistance without alteration of adiposity in mice fed high-fat diet. Slc16a1 deletion in adipocytes elevates intracellular lactate level while reducing circulating lactate concentration. Mechanistically, lactate retention due to Slc16a1 deletion initiates adipocyte apoptosis and cytokine release. The locally recruited macrophages amplify the inflammation by release of proinflammatory cytokines to the circulation, leading to insulin resistance in peripheral tissues. This study, therefore, indicates that lactate within adipocytes has a key biological function linking obesity to insulin resistance, and harnessing lactate in adipocytes can be a promising strategy to break this link.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.